
©2024 Databricks Inc. — All rights reserved

Rohin Bhasin & Caroline Chen
June 11, 2024

1

RUNHOUSE:
A PYTORCH APPROACH TO
ML INFRA

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 2

MODERN ML INFRA
IS FRAGMENTED
Workflows are inflexible, duplicative, and
unreproducible.

©2024 Databricks Inc. — All rights reserved 3

RESEARCH &
EXPERIMENTATION

Notebooks, sandboxes, toy
environments

fast iteration
high debuggability

✘ no powerful compute
✘ no collaboration w/ team

PRODUCTION

DAGs, orchestrators,
containers

powerful compute
reliable, stable environments

✘ poor debuggability
✘ over packaged
✘ inflexible across infra types

TRANSLATION &
PACKAGING

• 1-4 month process
• translating code for
specific infra, learning DSLs
• packaging code into DAGs
• containerization of
environment

©2024 Databricks Inc. — All rights reserved 4

ISSUES STEM FROM FRAGMENTATION

No Infrastructure
Flexibility

No E2E Management
& Visibility

No ML
Flywheel

Slow iteration speed
Duplication everywhere

Blocks scaling and cost optimization
Migrations lead to infra lock-in

Monitoring, control, and allocation infra
specific and fragmented

©2024 Databricks Inc. — All rights reserved 5

WHAT ML DEVELOPMENT SHOULD LOOK LIKE

High Iteration Speed

• No excessive builds during dev work
• As smooth as developing locally

Central Control

• Single control plane for resource visibility
and management
• Lineage tracking and governance

Multiplayer

• Reusable compute and services
• Reproducible behavior
• Shareable

Infra Agnostic

• No migrations and DSLs
• Flexible to scaling & cost optimization

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 6

A PYTORCH-LIKE
SOLUTION
Runhouse is a Python native, infra-agnostic
interface into your ML infrastructure.

©2024 Databricks Inc. — All rights reserved

PYTORCH

PURE PYTHON RUNS ANYWHERE

7

RUNHOUSE

train_fn.to(my_gpu)

Easy Setup

$ pip install runhouse

Runs As-is

No DSLs, configs, decorators, or CLI magic

Develop Anywhere

IDEs, Notebooks

my_model.to(cuda)

Deploy Anywhere

Orchestrators, containers, CI/CD

©2024 Databricks Inc. — All rights reserved

Traditional DAG
Rigid and siloed

8

EAGER EXECUTION FOR INFRA FLEXIBILITY

Using Runhouse
Scale and cost-optimize

Data Pre-
processing

Model
Training

Model Eval

Model
Inference

Schedule for
Execution

?

preproc()
...

train()
...

evaluate()
...

inference()

©2024 Databricks Inc. — All rights reserved 9

RESEARCH &
EXPERIMENTATION

Notebooks, sandboxes, toy
environments

fast iteration
high debuggability

access to compute
easy collaboration

PRODUCTION

DAGs, orchestrators,
containers

powerful compute
reliable, stable environments

high debuggability
code run as-is
flexible across infra types

W/ RUNHOUSE

• Code is identical
• Exactly reproducible
• Across teammates, across
infrastructure
• Save time & cost

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 10

DEMO
“Training” on AWS EC2 via Runhouse.

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 11

API
FUNDAMENTALS
An overview of Runhouse core
components and APIs.

©2024 Databricks Inc. — All rights reserved

cluster = rh.ondemand_cluster(
name="rh-cluster",
instance_type="A10G:4+",
provider="aws"

)

Compute
Your own infrastructure

Environment
Packages, setup, & secrets

Python Class / Function
Your existing code

12

env = rh.env(
name="fn_env",
reqs=["torch"],
working_dir="./",
env_vars={"USER": "*****"},
secrets=["aws", "openai"],
setup_cmds=[f"mkdir -p

~/results"]
)

def train(params, data):
...

class Embedder:
...

rh_train = rh.function(train)

RhEmbedder = rh.module(Embedder)

KEY COMPONENTS FOR REMOTE
DEPLOYMENT & REPRODUCIBILITY

©2024 Databricks Inc. — All rights reserved 13

DEPLOY, SAVE, AND SHARE SERVICES

.to()

Send resources to any
infrastructure and
environment.

rh_train = rh_train.to(
cluster, env)

rh_function(args)

.share()

Share resources with
your teammates, or even
publish to the public.

cluster.share(
“team@run.house”)

rh_function.share(
visibility=”public”)

.save()

Save resources and
metadata, to be reused
later on.

env.save()

cluster.save()

rh_function.save()

mailto:team@run.house

©2024 Databricks Inc. — All rights reserved 14

LOAD AND REUSE THE SERVICE HASSLE-FREE

Reuse saved function

remote_fn =
rh.function(“fn_name”)

result = remote_fn()

Use shared function

remote_fn =
rh.function(“/rohin/fn_name”)

result = remote_fn()

©2024 Databricks Inc. — All rights reserved

Fine-grained access to compute and services
Comprehensive usage tracking

15

DEN: A COLLABORATION LAYER FOR INFRA

Sharing &
Collaboration

Search &
Discovery

Lineage &
Versioning

Search through applications
View details all in one place

Share with teammates
Iterate on shared services

Auth &
Governance

Provenance for executed code
Keep track of previous states

©2024 Databricks Inc. — All rights reserved 16

SOON: INFRA MANAGEMENT & VISIBILITY

Unified Visibility
• Live compute tracking
• Resource utilization
• Usage inspection

Cost Optimization
• Compute types, clouds, regions
• Global pool of compute
• Scheduling & autostop
• Servicification of repeated work

©2024 Databricks Inc. — All rights reserved©2024 Databricks Inc. — All rights reserved 17

TRY IT OUT :)

$ pip install runhouse

run.house/examples

rohin@run.house caroline@run.house

mailto:rohin@run.house
mailto:caroline@run.house

	RUNHOUSE:
A PYTORCH APPROACH TO ML INFRA

	MODERN ML INFRA IS FRAGMENTED

	Slide Number 3
	ISSUES STEM FROM FRAGMENTATION
	WHAT ML DEVELOPMENT SHOULD LOOK LIKE
	A PYTORCH-LIKE SOLUTION

	PURE PYTHON RUNS ANYWHERE
	EAGER EXECUTION FOR INFRA FLEXIBILITY
	Slide Number 9
	DEMO

“Training” on AWS EC2 via Runhouse.

	API
FUNDAMENTALS
	KEY COMPONENTS FOR REMOTE DEPLOYMENT & REPRODUCIBILITY
	DEPLOY, SAVE, AND SHARE SERVICES
	LOAD AND REUSE THE SERVICE HASSLE-FREE
	DEN: A COLLABORATION LAYER FOR INFRA
	SOON: INFRA MANAGEMENT & VISIBILITY
	TRY IT OUT :)

